تاثير ميدان مغناطيسي بر روي سوخت
ساده ترين هيدروكربن شناخته شده متان CH4 است که بيش از 90% سوخت گاز طبيعي راتشكيل مي دهد و منبع مهم ئيدروژن مي باشد . مولكول آن شامل يك اتم كربن و چهار اتم ئيدروژن است . مولكول مزبور از نظر الكتريكي خنثي مي باشد .
در ئيدروكربنها از نقطه نظر انرژي بيشينه ي مقدار انرژي قابل حصول در اتم ئيدروژن قرار گرفته است، اما چرا؟
اين مطلب را مي توان با ذكر مثالي مشخص نمود. در مولكول اكتان (C8H18) كربن 84.2% كل مولكول را به خود اختصاص داده است . وقتي اين مولكول به احتراق در مي آيد به ازاء هر پوند كربن BTU12244 گرما توليد مي گردد، در حاليكه در همين مولكول 15.8% به ئيدروژن اختصاص دارد اما انرژي كه از سوختن ئيدروژن بدست مي آيد ،BTU9801 است. ئيدروژن اصلي ترين و سبك ترين عنصري است كه تا كنون بوسيله بشر شناخته شده است. ئيدروژن تشكيل دهنده بخش اصلي سوختهاي ئيدروكربني است . (علاوه بر كربن مقدار كمي سولفور وگازهاي بي اثر نيز توليد مي گردد). ئيدروژن از نظر الكتريكي داراي يك بخش مثبت (پروتون) ويك بخش منفي (الكترون) مي باشد. يعني گشتاور دوقطبي دارد. از طرفي هم ديا مغناطيس وهم پارا مغناطيس است كه وابسته به جهت نسبي اسپين است . اگرچه ساده ترين عنصر در بين همه عناصر مي باشد ولي مولكول آن به صورت دو ايزومر متفاوت يعني پارا و اورتو ظاهر مي گردد. جهت اسپيني، تعيين كننده اورتو يا پارا بودن مولكول است. بنابراين در مولكول ئيدروژن پارا كه عدد كوانتمي زوج را اشغال مي نمايد حالت اسپين يك اتم نسبت به ديگري موازي است . به عبارت ديگر يكي در جهت عقربه ساعت و ديگر در جهت خلاف آن مي باشد. در اين حالت مولكول ديا مغناطيس است .
در وضعيت اورتو مولكول عدد كوانتمي فرد يا سطوح انرژي فرد را اشغال مي نمايد به عبارت ديگر اسپين¬ها در اتمها موازي هستند0 (هر دو بالا يا در جهت عقربه ساعت ) . در اين حالت مولكول پارا مغناطيس است و كاتاليست مناسبي براي بسياري از واكنشها است ، بنابراين جهت اسپين اثر مشخصي بر روي خواص فيزيكي دارد(گرماي ويژه ،فشار بخار) و در رفتار مولكولي گازها نيز موثر است .
در زماني كه اسپين ها در يك جهت قرار مي گيرند اورتوهيدروژن به مقدار زيادي ناپايدار مي شود . اورتوئيدروژن بسيار فعالتر از همتاي پاراهيدروژن خود مي باشد. سوخت هيدروژني مايعي كه در موتورهاي شاتل فضايي و راكتهاي فضايي ذخيره مي شوند به دلايل ايمني مانند انرژي كمتر فراريت كمتر و ميل به واكنش كمتر بصورت پاراهيدروژن مي باشند .
در صورتيكه طي زمان استارت شاتل ، شكل هيدروژن اورتو سودمند اس زيرا فرايند احتراق را تشديد مي نمايد. براي تبديل مطمئن پارا به اورتو لازم است انرژي برهمكنش بين حالت اسپيني مولكول H2 تغيير نمايد .
در دماي 20 (دماي اتاق) 75% ئيدروژن در حالت پارا است . زمانيكه دماي ئيدرژن به -235C(ئيدروژن مايع) مي رسد99% ئيدروژن در حالت اورتو است و بسيار فعال و ناپايدار مي باشد به عبارت ديگر بشدت قابليت احتراق دارد . معلوم است نگهداري ئيدروژن در دماي پائين كه راندمان احتراق نيز افزايش يافته است، عملي نمي باشد. در دهه1950 دانشمندان سوخت موشك در آمريكا مانند Simon Roskin در مي يابند. كه ئيدروژن پارا مي تواند به ئيدروژن اورتو تبديل شود. اين عمل بايد تحت ميدان مغناطيسي انجام گيرد يعني با كاربرد مناسب ميدان مغناطيسي حالت اسپيني مولكول ئيدروژن تغيير مي نمايد. افزايش بزرگ در انرژي اتم و واكنش پذيري كلي سوخت معنايش بهبود راندمان احتراق خواهد بود. موضوع عقيده Ruskin به صورت Patent ثبت شده است . توجه داشته باشيد تحتU.S.C35 بخش 101 هرPatent كاربردي بايد از نظر علمي و قابليت عملي اثبات شود تا مجوز انتشار دريافت نمايد.اكنون در مورد سوخت خودرو نيز همان اصول مورد استفاده قرار گرفته و همان اثر به وسيله تبديل اتم ئيدروژن پارا به اورتو مشاهده گرديده است
اثر ميدان مغناطيسي
یک ميدان مغناطيسي به اندازهء كافي قوي مي تواند مولكول ئيدروكربن را از حالت پارا به حالت با سطح انرژي بالاتر از اورتو تغيير دهد. اثر تغيير اسپين مولكول هاي سوخت مي تواند از نظر اپتيكي بررسي شود . اساس آن بر عبور نور مرئي از ميان سوخت مايع و سیال استوار است . اين روش به وسيله دانشمندان با استفاده از دوربينهاي مادون قرمز اثبات گرديده است .
تبديل ئيدروژن به هيدروژن اورتو در يك ميدان مغناطيسي يكنواخت و به اندازه كافي شديد رخ مي دهد. در اين حالت هم زمان با اعمال ميدان، تبديل سيستم متقارن پارائيدروژن به پادمتقارن اورتوئيدروژن خواهيم داشت، نتيجهء اين عمل افزايش ميل به واكنش و افزايش قابليت كاتاليستي است . امروز مشخص شده است كه اين تبديل از نظر تكنولوژيكي امتيازات زيادي دارد. خصوصا وقتي از ئيدروژن به عنوان كاتاليست استفاده مي شود ومثلاً در پالايش روغن ، فرايندهاي متالوژيكي، ئيدروژناسيون كربن و برخي ئيدروكربنها، چربيها، پلي مريزاسيون پلاستيك و الاستومرها همچنين در مهندسي محيط زيست مانند تصفيه پساب ها رسوبات ، لجن ها و غيره . ئيدروكربنها اساسا"ساختمان قفسي شكل دارند (cagelike ) . به دليل وجود همين نوع ساختمان است كه اكسيداسيون اتمهاي كربن داخل ساختمان طي فرايند احتراق سبب مي گردد فرايند مذكور بطور ناقص انجام شود. آنها ب صورت گروههايي از تركيبات حلقوي پيوند مي خورند. چنين گروههايي چند خوشه ها را تشكيل مي دهند و مسير اكسيژن هوا به داخل گروههاي مولكولي بسته است. توجه داشته باشيد با آمدن هوا از ميني فولد در مخلوط سوخت اتفاقي رخ نمي دهد .
به منظور احتراق سوخت استفاده از اكسيژن هوا به عنوان ماده اكسيدكننده لازم است . به عنوان مثال براي آنكه 1kgگازوئيل كاملاً بسوزد 5kg هوا لازم است. در اگزوز پس از عمل احتراق بايـد دي اكسيدكربن ، آب ونيتروژن هوا وجود داشته باشد اما در عمل در خروجي اگزوز گازهاي زير وجود دارند:
O2 ،NO2 ،HC ،H2 ،CO طي سالهاي متمادي طراحان موتورهاي درون سوز هدف مشتركي را دنبال مي كردند و آن عبارت بود از مبارزه عليه اثر چند خوشه اي هاي (cluster) مولكول سوخت ئيدروكربني و بهبود فرايند احتراق .مشكل اصلي در طراحي موتور به نحوي كه محيط زيست را آلوده ننمايد اين است كه براي سوختن همه ئيدروكربنها در اتاقك احتراق در حين عمليات احتراق دماي درون سيلندر بايد افزايش يابد. موتورهاي قديمي مقادير بسيار زيـادي هيدروكربنهاي نسوخته و CO را توليد مي نمودند ، همچنين مقدار كمتري از اكسيدهاي نيتروژن نيز توليد مي گرديد. با تجديد نظرهاي به عمل آمده در نسبتهاي تراكم و افزايش كارايي موتور، حركت به سمت توليد آلاينده هايي شامل سموم نيتروژني افزايش يافته است .
در موتورهاي توربو شار نسبت هاي تراكمي را تغيير داده اند و به آن مشكل نيتروژن اضافه شده است. اما از طرف ديگر سيستمهاي تغذيه و اگزوز بهبودي يافته اند، سيستم الكترونيكي جرقه بسيار بهتر شده ، همچنين دستگاههاي اندازه گيري وتنظيم نسبت سوخت وهوا نتايج مثبت را در پي داشته اند و سرانجام مبدلهاي كاتاليستي موثر ساخته شده اند. اما عليرغم تمام اين بهبوديها خروجي اگزوزها هنوز كاملا تميز نشده اند و به صورت گاز CO خارج مي شوند و بقيه گازهاي آلوده كننده هوا نيز به صورت HC وNO2 منتشر مي شوند و يا روي ديوار داخلي سيلندر موتور به صورت باقيمانده كربني سياه رسوب مي نمايند، همه ي اينها نشان از احتراق ناقص خودرو است .
-دلايل اين موضوع عبارتند از :
1. شكل هيدروكربنها چند خوشه اي cluster است،گروههاي مولكولي بسته . بنابراين درون آنها از مقدار هواي مناسب محروم است و فقدان اكسيژن سبب عدم احتراق كامل نمي گردد .
توجه: تمايل مولكولهاي هيدروكربن به چندخوشه اي سبب مي گردد گروههاي زيادي از آنها به لوله ها ونازلهاي سوخت بچسبند. در اين شرايط هواي اضافه در مخلوط سوخت جهت احتراق بهتر تهيه نخواهد شد. بنابراين در اگزوز HC ،CO نسوخته و دود خواهيم داشت .
2. اكسيژن با ظرفيت O2- از نظر الكتروني منفي است ، ئيدروكربنها ساختار مولكولي خنثي دارند، كه پس از عبور از ميان لوله هاي سوخت فولادي بطور سطحي باردار مي شوند. اين بار سطحي نيز منفي است . بنابراين وقتي اين دو اتم با پتانسيل يكسان به سمت يكديگر در اتاقك احتراق مي آيند، همديگر را دفع نموده و نتيجه آن احتراق ناقص است. پس همه تحقيقات اساسي روي افزايش واكنش پذيري سوخت با اكسيژن متمركز شده است. توجه داشته باشيد افزايش اكسيداسيون مترادف با افزايش احتراق مفيد است .
مزاياي مبدلهاي مغناطيسي :
1- در مبدلهاي مغناطيسي مقدار مسافت طي شده با مقدار سوخت معين افزايش مي يابد و راندمان موتور نيز زياد مي گردد .
2- تاثير مبدلهاي مغناطيسي پس از شش تا هفت كيلومتر يعني تخليه سوخت موجود در كاربراتور يا انژكتور به سرعت نمايان مي شود .
3- مغناطيس كننده را مي توان به سادگي نصب نمود و آن را باز كرده و به خودرو ديگري منتقل نمائيم .
4- هزينه مبدلهاي مغناطيسي با صرفه جويي انجام شده در دو يا سه باك تامين مي گردد و اين بسيار كمتر از ساير انواع مبدلهاست .
5- دستگاه مغناطيس كننده مي تواند به خوبي كار نموده و با همه انواع سوخت ها نتايج مطلوب ارئه نمايد. ( بنزين سوپر، بدون سرب، گازوئيل و CNGو (LPG
اكنون لازم است بحث را طي سه بخش خلاصه نمائيم :
الف: ئيدروكربنهاي نسوخته HC علاوه بر CO از سيستم اگزوز به بيرون منتشر مي شوند ، كه اين دو مي توانند به عنوان سوخت اضافي در نظر گرفته شوند، زيرا اگر شرايط صحيح برقرار شود HCوCO مي توانند در اتاقك احتراق به خوبي سوخته شوند و در شرايط احتراقي صحيح برقرار گردد .
ب : واكنش شيميايي-ئيدروژني بوسيله ظرفيت آن تعيين مي شود (الكترون لايه خارجي) كه تحت اثر ميدان مغناطيسي است. بكارگيري آهن رباي مناسب بهترين منبع كنترل موقعيت الكترون است .
ج : كاربرد ميدان مغناطيسي مناسب، تغييرات مفيدي در ساختار سوخت اجرا مي نمايد و واكنش پذيري بطوركلي در فرايند احتراق افزايش مي يابد .
با استفاده از ميدانهاي مغناطيسي تمام بخشهاي الف، ب، و ج رعايت شده و به وقوع مي پيوندد. اكنون به توضيح هر يك از بخشها مي پردازيم :
الف : وقتي ئيدروكربن سوختني (مانند مولكول متانول) مي سوزد ، اولين مرحله اكسيداسيون مربوط به اتمهاي ئيدروژن است. پس از آن اتمهاي كربن مي سوزند ( CH4+2O2→CO2+2H2O ) .سوخت ئيدروژني در زمان كمتر و با سرعت بيشتري در اتاقك احتراق مي سوزد .
در شرايط معمول برخي از كربنها بطور جزئي اكسيداسيون مي گردند در اين حالت مسئوليت سوخت ناقص به عهده آنها است. توجه داشته باشيد اكسيژن به سرعت با ئيدروژن تركيب مي شود، اما واكنش كربن- اكسيژن انرژي كمتر دارد .
اتم اكسيژن هميشه ظرفيت 2- دارد . ظرفيت كربن مي تواند مثبت يا منفي باشد، كه ناشي از چهار الكترون لايه بيروني آن است. لايه بيروني با 8 الكترون كاملا پر مي شود . بالاترين راندمان با استفاده از دستگاه مغناطيس كننده ايجاد مي گردد كه اثر آن افزايش ميزان گاز CO2 است، به علاوه همچنانكه آلودگي كمتر مي شود راندمان احتراق نيز افزايش مي يابد. افت در انتشار HC ، CO بسادگي بوسيله دستگاه هاي سنجش گاز مشخص (دياك) مي گردد. تقريباً بين 75% تا 92%كاهش در مقدارHC ، تا 99% كاهش در CO خواهيم داشت ، همچنين با كاهش مقدار HC مسافت طي شده بر ليتر مصرفي سوخت افزايش مي¬يابد. اين نتايج را مي توان از نظر علمي بررسي نمود، زيرا قابليت اندازه گيري كاهش خروج گاز از اگزوز را مي توان با دستگاههاي اندازه گيري انجام داد .
راندمان احتراق را نيز مي توان تعيين نمود. با استفاده از دستگاه مغناطيس كننده مسافت طي شده بر ليتر نيز 15% تا 25% افزايش مي يابد زيرا دستگاه مغناطيس كننده سوخت بوسيله افزايش راندمان احتراق ، سوخت را ذخيره مي نمايد. اصلاً بيشترين كاهش سوخت درگستره سرعت وگشتاور ماكزيموم رخ مي دهد ، زمانيكه بالاترين افزايش توان حدود10hp حاصل مي شود .
ب : اگر چه خواص اسپيني لايه خارجي الكترون واكنش پذيري سوخت را افزايش مي دهد . حالت اسپيني بالاتر مولكول ئيدروژن پتانسيل الكتريكي ، بالايي را در جذب اكسيژن از خودنشان ميدهد . پس بوسيله تغيير خواص اسپيني مولكول H2 مي توانيم گشتاور مغناطيسي آن را زياد نموده و واكنش پذيري سوخت كربني را افزايش دهيم تا فرآيند مربوطه اصلاح گردد . اساسا شكل ايزمريك ئيدروكربن را از حالت پارا به حلت با انرژي بالاتر اورتو تغيير ميدهد . در چنين حالتي اكسيژن اضافي كاهش مي يابد . حالت اورتو فرار نيز است . علاوه بر اينها ساختمان سوخت و خواصي نظير هدايت الكتريكي ، چگالي و ويسكوزتيه تغيير مي يابد و ساختار ريز يكنواخت تر مفيدي خواهيم داشت
ج : مولكولهاي ئيدروكربن خوشه اي شكل هستند، از نظر تكنيكي اهميت كشف وانداروالس بخاط كاربرد ميدان مغناطيسي با قدرت بالا را افزايش مي دهد ، زيرا تحت چنين ميدانهايي پيوندH-C سست كـرده آنهـا به حـالت چنـد خوشه اي در مي آيند .
در اين حالت آنها بهنجار شده و مستقل از يكديگر و از هم نيز فاصله مي گيرند . در چنين حـالتي سطح بزرگتري براي جذب اكسيژن دارند . با يك مثال مشابه سعي مي كنيم تصور ذهنـي بهتر از عمليات ارائه دهيم . سوزاندن گرد زغـال و بريكت زغال را در نظر بگيريد در آنجا نيز هدف افزايش راندمان فرايند احتراق است . در آن شرايط بايد مولكولها دسترسي بيشتري به اكسيژن داشته باشند . بنابراين با انرژي دار نمودن سوخت و اكسيداسيون راندمان احتراق افزايش مي يابد . سوخت فعال و ديناميك شده و فرايند احتراق سريعتر و كاملتر ميگردد . اين مولكولهاي هيدروكربني جديد كه تحت ميدان مغناطيسي قرارگرفته اند مشخصات مهم ديگري نيز دارند از جمله carabon varnish را در اتاقك احتراق كاهش مي دهند . همچنين اين ماده را از روي سطح نازلها و شمعهاي لوله اگزوز حذف مي نمايد . همچنين اجازه تشكيل رسوبات جديد و مضر را نمي دهند ، بعلاوه دستگاه مغناطيس كننده ( يا تقويت كننده ) راندمان كاربراتور يا انژكتور را تضمين نموده و سبب ميگردد عمل استارت خودرو بهتر صورت پذيرد ، همچنين ديناميك رانش بطور قابل ملاحظه اي بهتر مي گردد، قدرت گشتاور، ميل لنگ نيز بهتر مي گردد .
تاريخچه ي استفاده از مگنت در صنعت و سوخت
تاريخچه تحقيقات علمي در مورد اثر ميدان مغناطيسي بر روي حركت مایعات و گازهای سوختنی به سال 1831 بر مي گردد و بر روي آزمايشاتي كه توسط مايكل فارادي و جيمز ماكسول انجام داده اند متمركز مي شود. مايكل فارادي در يافته بود آبي كه از نزديكي يك ماده هادي عبور كند بار الكتريكي ضعيفي را توليد ميشود
انواع خودرو : پراید, پژو, مزدا ,۳۲۳, ماکسیما, ال ۹۰, تیبا, ریوو.............. ml
شما میتوانید ازطریق تلگرام mlautoparts یا در اینستاگرام به digi_ghate , mlcommercicalما را دنبال کنید